Задачи на движение по прямой
На этот раз рассматриваем задачи из открытого банка заданий ЕГЭ по математике на прямолинейное движение.
Смотрите также другие типы Задач №11 ЕГЭ по математике:
1 (на среднюю скорость), 2 (на движение по окружности), 3 (движение по воде), 4 (на работу), 6 (на прогрессии), 7 (на смеси и сплавы).
Также смотрите видеолекцию «Текстовые задачи» здесь.
Задачи В14 могут встретиться на ЕГЭ по математике совсем простые, где может даже не потребоваться введение переменной. Чаще будут встречаться задачи, сводимые к решению квадратных уравнений (кстати, что делать, если дискриминант намечается слишком большой, – смотрите здесь и здесь).
Задание 1.
Два велосипедиста одновременно отправились в 130-километровый пробег. Первый ехал со скоростью, на 3 км/ч большей, чем скорость второго, и прибыл к финишу на 3 часа раньше второго. Найти скорость велосипедиста, пришедшего к финишу первым. Ответ дайте в км/ч.
Решение:
Задание 2.
Из пункта А в пункт В, расстояние между которыми 60 км, одновременно выехали автомобилист и велосипедист. Известно, что в час автомобилист проезжает на 110 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт В на 5,5 часов позже автомобилиста. Ответ дайте в км/ч.
Решение:
Задание 3.
Велосипедист выехал с постоянной скоростью из города А в город В, расстояние между которыми равно 80 км. На следующий день он отправился обратно со скоростью на 2 км/ч больше прежней. По дороге он сделал остановку на 2 часа. В результате он затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В. Ответ дайте в км/ч.
Решение:
Задание 4.
Из пункта A в пункт B одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого на 10 км/ч, а вторую половину пути – со скоростью 60 км/ч, в результате чего прибыл в пункт В одновременно с первым автомобилем. Найдите скорость первого автомобиля, если известно, что она больше 39 км/ч. Ответ дайте в км/ч.
Решение:
Задание 5.
Из двух городов, расстояние между которыми равно 300 км, навстречу друг другу одновременно выехали два автомобиля. Через сколько часов автомобили встретятся, если их скорости равны 70 км/ч и 80 км/ч?
Решение:
Задание 6.
Из городов A и B, расстояние между которыми равно 300 км, навстречу друг другу одновременно выехали два автомобиля и встретились через 2 часа на расстоянии 160 км от города B. Найдите скорость автомобиля, выехавшего из города A. Ответ дайте в км/ч.
Решение:
Задание 7.
Расстояние между городами A и B равно 620 км. Из города A в город B выехал первый автомобиль, а через два часа после этого навстречу ему из города B выехал со скоростью 90 км/ч второй автомобиль. Найдите скорость первого автомобиля, если автомобили встретились на расстоянии 350 км от города A. Ответ дайте в км/ч.
Решение:
Задание 8.
Товарный поезд каждую минуту проезжает на 450 метров меньше, чем скорый, и на путь в 240 км тратит времени на 2 часа больше, чем скорый. Найдите скорость товарного поезда. Ответ дайте в км/ч.
Решение:
Задание 9.
Расстояние между городами A и B равно 198 км. Из города A в город B выехал автомобиль, а через 3 часа следом за ним со скоростью 80 км/ч выехал мотоциклист, догнал автомобиль в городе C и повернул обратно. Когда он вернулся в A, автомобиль прибыл в B. Найдите расстояние от A до C. Ответ дайте в километрах.
Решение:
Задание 10.
Два пешехода отправляются одновременно в одном направлении из одного и того же места на прогулку по аллее парка. Скорость первого на 1,5 км/ч больше скорости второго. Через сколько минут расстояние между пешеходами станет равным 475 метрам?
Решение:
Задание 11.
Первый велосипедист выехал из поселка по шоссе со скоростью 15 км/ч. Через час после него со скоростью 12 км/ч из того же поселка в том же направлении выехал второй велосипедист, а еще через час после этого — третий. Найдите скорость третьего велосипедиста, если сначала он догнал второго, а через 2 часа 20 минут после этого догнал первого. Ответ дайте в км/ч.
Решение:
Задание 12.
Поезд, двигаясь равномерно со скоростью 60 км/ч, проезжает мимо придорожного столба за 30 секунд. Найдите длину поезда в метрах.
Решение:
Задание 13.
Поезд, двигаясь равномерно со скоростью 80 км/ч, проезжает мимо лесополосы, длина которой равна 500 метров, за 36 секунд. Найдите длину поезда в метрах.
Решение:
Задание 14.
По двум параллельным железнодорожным путям в одном направлении следуют пассажирский и товарный поезда, скорости которых равны соответственно 80 км/ч и 50 км/ч. Длина товарного поезда равна 1200 метрам. Найдите длину пассажирского поезда, если время, за которое он прошел мимо товарного поезда, равно 3 минутам. Ответ дайте в метрах.
Решение:
Смотрите фрагмент видеолекции
Живы еще? ;) =>+ показать
Вы можете пройти тест по задачам на движение по прямой.
Здравствуйте! В задании 3 у Вас неправильно найдены корни. Ответ должен быть 8.
Да, конечно. Спасибо!
Здравствуйте! В задании разве не 10?
Здравствуйте, задание 14, возможно, проще решать так: пассажирский поезд пройдет мимо товарного, когда удалится от него на свою длину, то есть пройдет путь, равный сумме длин товарного и пассажирского поездов. Скорость удаления при движении в одном направлении равна разности скоростей, то есть (80-50)=30 км/ч=500 м/мин. По условию пассажирский поезд прошел мимо товарного за 3 минуты с относительной скоростью, равной скорости удаления. Значит, l_т+l_п=1200+l_п=3*500=1500(м), откуда l_п=300 м.
Да, можно и так, если знакомы понятия «скорость сближения, скорость удаления».
Может, ваш вариант кому-то пригодится. Спасибо.
Cкажите,пожалуйста,а почему в 9 задаче мотоциклист возвращается с той же скоростью из с до а, ведь в задаче об этом ничего не сказано,то есть не говорится о том ,что скорость постоянна
В условии сказано, что скорость мотоциклиста 80 км/ч.
Спасибо большое)