Смотрите также №14 Т/Р №280
16. В треугольнике $ABC$ провели высоты $AA_1$ и $BB_1$. Окружность, описанная вокруг треугольника $ANA_1$, где точка $N$ – середина стороны $AB$, пересекла прямую $A_1B_1$ в точке $K$.
а) Докажите, что прямая $AK$ касается окружности, описанной около треугольника $ABC$.
б) Найдите отношение площадей четырехугольника $ABA_1B_1$ и треугольника $CA_1B_1$, если $\angle ABC=45^{\circ}$, $AB_1=BN=1$.
Решение:
Ответ: $7+4\sqrt3.$
Добавить комментарий