Архив по категории: Логарифмы

Задание №17 Т/Р №120 А. Ларина

2023-07-05

В новом формате ЕГЭ по математике задание значится как «Задание №15»

Смотрите также №15№16№18№19№20.

Решите неравенство $log_x(11x-2x^2)+log_{11-2x}x^4\leq 5.$ Читать далее

Задание №17 Т/Р №116 А. Ларина

2023-06-15

Смотрите также №15№16№18№19№20.

Решите неравенство $log_x(1-2x)\leq 3-log_{(\frac{1}{x}-2)}x.$ Читать далее

Задание №17 Т/Р №112 А. Ларина

2023-07-09

Смотрите также №15№16№18№19№20.

Решите неравенство:

$|6-7^x|\leq (7^x-6)\cdot log_6(x+1).$

Читать далее

Задание №17 Т/Р №110 А. Ларина

2023-07-09

Смотрите также №15№16№18, №19№20

Решите неравенство:

$log_{5-x}(5+9x-2x^2)+log_{1+2x}(x^2-10x+25)^2\leq 5.$ Читать далее

Задание №17 Т/Р №109 А. Ларина

2023-07-09

Смотрите также №15№16№18№19№20.

Решите неравенство

$log_2(x^2-8x+6)\geq 2+\frac{1}{2}log_2(2x-1).$

Читать далее

Задание №17 Т/Р №106 А. Ларина

2023-07-11

Смотрите также №15№16№18№19№20.

Решите неравенство

$\large log_{4x}2x-log_{2x^2}4x^2\geq -\frac{3}{2}.$

Читать далее

Задание №17 Т/Р №105 А. Ларина

2023-07-11

Смотрите также №15№16№18№19№20.

Решите неравенство

$\large\frac{log_2(2\cdot 4^x-11\cdot 2^x+9)}{x+3}\leq 1.$ Читать далее

Задание №17 Т/Р №104 А. Ларина

2023-07-11

Смотрите также №15№16№18№19№20

Решите неравенство

$log_x(3-x)log_x(4-x)-log_x(x^2-7x+12)+1\geq 0.$ Читать далее

Задание №17 Т/Р №103 А. Ларина

2023-07-11

Смотрите также №15№16№18№19№20.

Решите неравенство

$\frac{\sqrt{6+x-x^2}}{log_2(5-2x)}\leq \frac{\sqrt{6+x-x^2}}{log_2(x+4)}.$ Читать далее

Задание №17 Т/Р №102 А. Ларина

2023-07-11

Решите неравенство:

$log_3(x^2-4x+5)\leq \frac{2x}{log_{x^2-4x+5}(9^x+3^x-12)}.$ Читать далее

Задание №17 Т/Р №100 А. Ларина

2023-07-11

Смотрите также №15,  №16№18№20

Решите неравенство

$log_x(\frac{100}{x})\leq \sqrt{log_x(100x^5)}$.

Читать далее

Задание №17 Т/Р №101 А. Ларина

2023-07-11

Смотрите также №15,  №16№18№19№20.

Решите неравенство

$log_{2x^2-x}(3x-1)\cdot log_{2x-x^2}(3-2x)\geq 0.$ Читать далее

Задание №17 Т/Р № 99 А. Ларина

2023-07-11

Смотрите также №15№16№18№19№20.

Решите неравенство

$log_{2x}(x-4)log_{x-1}(6-x)<0.$ Читать далее

Задание №17 (С3) Т/Р №97 А. Ларина

2023-07-12

Решите неравенство: $log_3(x+6)\leq (1-log_{9x}(6-x))\cdot log_3(9x).$ Читать далее

Задание №17 (С3) Т/Р №96 А. Ларина

2023-07-15

Смотрите также №15 №16№18№19№20.

Решите неравенство

$\sqrt{1-log_5(x^2-2x+2)}<\frac{1}{2}log_{\sqrt5}(5x^2-10x+10).$

Читать далее