Архив по категории: Т/P A. Ларина

Задание №19 Т/Р №210 А. Ларина

2017-11-08

Смотрите также №13№14№15№16; №17№18 Тренировочной работы №210 А. Ларина.

19. На листочке написали несколько не обязательно различных двузначных натуральных чисел без нулей в десятичной записи. Сумма этих чисел оказалась равной 1485. В каждом числе поменяли местами первую и вторую цифры (например, число 23 заменили на число 32).

а) Приведите пример исходных чисел, для которых сумма получившихся чисел ровно в 3 раза меньше, чем сумма исходных чисел.
б) Могла ли сумма получившихся чисел быть ровно в 9 раза меньше, чем сумма исходных чисел?

в) Найдите наименьшее возможное значение суммы получившихся чисел.

Читать далее

Задание №18 Т/Р №210 А. Ларина

2017-11-08

Смотрите также №13№14№15№16; №17№19 Тренировочной работы №210 А. Ларина.

18. При каких значениях параметра a среди решений неравенства

 log_2(x-100)-log_{\frac{1}{2}}\frac{|x-101|}{105-x}+log_2\frac{|x-103|(105-x)}{x-100}>a.

содержится единственное целое число?

Читать далее

Задание №17 Т/Р №210 А. Ларина

2017-11-08

Смотрите также №13№14№15№16№18; №19 Тренировочной работы №210 А. Ларина.

17. Баржу грузоподъемностью 180 тонн используют для перевозки контейнеров типов А и В. По условиям договора количество перевозимых контейнеров типа А должно составлять не более 75% количества перевозимых контейнеров типа В. Вес и стоимость одного контейнера типа А составляет 3 тонны и 3 млн. руб., контейнера типа В – 7 тонн и 5 млн. руб. соответственно. Найдите наибольшую возможную суммарную стоимость (в млн. руб.) всех контейнеров, которые можно перевезти при данных условиях. Укажите число контейнеров типа А и число контейнеров типа В, которые нужно перевезти для получения наибольшей возможной суммарной стоимости.

Читать далее

Задание №16 Т/Р №210 А. Ларина

2017-11-07

Смотрите также №13№14№15№17№18; №19 Тренировочной работы №210 А. Ларина.

16. В равнобедренной трапеции ABCD основание AD в два раза больше основания BC.

а) Докажите, что высота CH трапеции разбивает основание AD на отрезки, один из

которых втрое больше другого.
б) Пусть O — точка пересечения диагоналей трапеции ABCD. Найдите расстояние от вершины C до середины отрезка OD, если BC=16 и AB=10.

Читать далее

Задание №14 Т/Р №210 А. Ларина

2017-11-07

Смотрите также №13№15№16; №17№18; №19 Тренировочной работы №210 А. Ларина.

14. Основанием пирамиды SABC является равносторонний треугольник ABC, длина

стороны которого равна 4\sqrt2. Боковое ребро SC перпендикулярно плоскости основания и имеет длину 2.
а) Докажите, что угол между скрещивающимися прямыми, одна из которых проходит через точку S и середину ребра BC, а другая проходит через точку C и середину ребра AB равен 45^{\circ}.

б) Найдите расстояние между этими скрещивающимися прямыми.

Читать далее

Задание №13 Т/Р №210 А. Ларина

2017-11-08

Смотрите также  №14№15№16; №17№18; №19 Тренировочной работы №210 А. Ларина.

13. Дано уравнение (2sin^2x-3sinx+1)\sqrt{tgx}=0.

а) Решите уравнение.

б) Найдите корни этого уравнения, принадлежащие отрезку [2\pi;\frac{7\pi}{2}].

Читать далее

Задание №16 Т/Р №209 А. Ларина

2017-10-31

Смотрите также №13; №14№15№17№18; №19 Тренировочной работы №209 А. Ларина.

16. Точка E – середина боковой стороны CD трапеции ABCD. На стороне AB отмечена точка K  так, что CK\parallel AE. Прямые CK,BE пересекаются в точке O.

а) Докажите, что CO=OK.

б) Найдите отношение оснований трапеции BC и AD, если площадь треугольника BCK составляет 0,09 площади трапеции ABCD.

Читать далее

Задание №13 Т/Р №209 А. Ларина

2017-10-31

Смотрите также №14№15№16; №17№18; №19 Тренировочной работы №209 А. Ларина.

13. Дано уравнение 18^x-9^{x+1}-2^{x+2}+36=0.

а) Решите уравнение.

б) Найдите корни этого уравнения, принадлежащие отрезку [2;4].

Читать далее

Задание №19 Т/Р №209 А. Ларина

2017-11-01

Смотрите также №13; №14№15№16; №17№18 Тренировочной работы №209 А. Ларина.

19. Натуральные числа от 1 до 12 разбивают на четыре группы, в каждой из которых есть по крайней мере два числа. Для каждой группы находят сумму чисел этой группы. Для каждой пары групп находят модуль разности полученных сумм и полученные 6 чисел складывают.

а) Может ли в результате получиться 0?
б) Может ли в результате получиться 1?
в) Какое наименьшее возможное значение полученного результата?

Читать далее

Задание №17 Т/Р №209 А. Ларина

2017-11-07

Смотрите также №13; №14№15№16№18; №19 Тренировочной работы №209 А. Ларина.

17. Иван Петрович получил кредит в банке под определенный процент годовых. Через год в счет погашения кредита он вернул в банк 1/6 от всей суммы, которую он должен банку к этому времени. А еще через год в счет полного погашения кредита Иван Петрович внес в банк сумму, на 20% превышающую величину полученного кредита. Каков процент годовых по кредиту в данном банке?

Читать далее

Задание №15 Т/Р №209 А. Ларина

2017-11-05

Смотрите также №13; №14№16; №17№18; №19 Тренировочной работы №209 А. Ларина.

15. Решите неравенство

log_{\frac{5-x}{4}}(x-2)\cdot log_{x-2}(6x-x^2)\geq log_{\frac{5-x}{4}}(3x^2-10x+15). Читать далее

Задание №18 Т/Р №209 А. Ларина

2017-10-31

Смотрите также №13; №14№15№16; №17№19 Тренировочной работы №209 А. Ларина.

18. При каких значениях параметра a система уравнений

\begin{cases} 9y=(a-1)^2+9(x-a)^2,& &y=log_2(1+\frac{|x|}{x});& \end{cases}

имеет единственное решение?

Читать далее

Задание №14 Т/Р №209 А. Ларина

2017-11-05

Смотрите также №13№15№16; №17№18; №19 Тренировочной работы №209 А. Ларина.

14. Внутри куба расположены два равных шара, касающихся друга. При этом один шар касается трех граней куба, имеющих общую вершину, а другой касается трех оставшихся граней.
а) Докажите, что центры шаров принадлежат диагонали куба, исходящей из общей для граней вершины.
б) Найдите радиусы этих шаров, если ребро куба равно  13.

Читать далее

Задание №15 Т/Р №207 А. Ларина

2017-10-18

Смотрите также №13№14№16; №17№18; №19 Тренировочной работы №207 А. Ларина.

15. Решите неравенство

\frac{1}{log_3(2x-1)\cdot log_{x-1}9}< \frac{log_3\sqrt{2x-1}}{log_3(x-1)}. Читать далее

Задание №18 Т/Р №207 А. Ларина

2017-10-18

Смотрите также №13№14№15№16; №17№19 Тренировочной работы №207 А. Ларина.

18. При каких значениях параметра a для всякого x из [0;7] верно неравенство

 ||x+2a|-3a|+||3x-a|+4a|\leq 7x+24.

Читать далее