Задание №13. Досрочный ЕГЭ 2018

2018-05-08

 Смотрите также задания №1-12№14; №15№16; №17№18; №19

13. a) Решите уравнение \frac{sinx}{sin^2\frac{x}{2}}=4cos^2\frac{x}{2}.
б) Найдите его корни на промежутке [-\frac{9\pi}{2};-3\pi].

Читать далее

Задание №18. Досрочный ЕГЭ 2018

2018-05-08

Смотрите также задания №1-12№13; №14; №15№16; №17№19

17. Найдите все значения параметра a, при каждом из которых система
уравнений

\begin{cases} ((x+5)^2+y^2-a^2)\cdot ln(9-x^2-y^2)=0,& & ((x+5)^2+y^2-a^2)\cdot (x+y-a+5)=0; \end{cases}

имеет ровно два различных решения.

Читать далее

Задание №15. Досрочный ЕГЭ 2018

2018-09-16

Смотрите также задания №1-12№13; №14№16; №17№18; №19

14. Решите неравенство  \frac{6^x-4\cdot 3^x}{x\cdot 2^x-5\cdot 2^x-4x+20}\leq \frac{1}{x-5}.

Читать далее

Досрочный ЕГЭ по математике 2018 от 31 марта

2018-05-08

Разбор заданий 1-12 досрочного ЕГЭ от 31.03.18.

Смотрите также задания №13; №14; №15№16; №17№18; №19  

1. Диагональ экрана телевизора равна 64 дюймам. Выразите диагональ экрана в сантиметрах, если в одном дюйме 2,54 см. Результат округлите до целого числа сантиметров.

Решение: + показать

2. На рисунке показано изменение температуры воздуха на протяжении трех суток. По горизонтали указывается дата и время суток, по вертикали — значение температуры в градусах Цельсия. Определите по рисунку наибольшую температуру воздуха 22 января. Ответ дайте в градусах Цельсия.

Решение: + показать

Читать далее

Задание №13. Досрочная волна 2018. Резервный день

2018-05-03
Разбор заданий резервного дня сдачи досрочного ЕГЭ 2018

Смотрите также задания №14; №15№16; №17№18; №19 

13. a) Решите уравнение \sqrt{x^3-4x^2-10x+29}=3-x.
б) Укажите все корни этого уравнения, принадлежащие промежутку [-\sqrt3;\sqrt{30}].

Читать далее

Задание №14 . Досрочная волна 2018. Резервный день

2018-05-03
Разбор заданий резервного дня сдачи досрочного ЕГЭ 2018

Смотрите также задания №13№15№16; №17№18; №19 

14. В правильной треугольной призме ABCA_1B_1C_1 все рёбра равны 2. Точка M — середина ребра AA_1.
а) Докажите, что прямые MB и B_1C перпендикулярны.
б) Найдите расстояние между прямыми MB и B_1C.

Читать далее

Задание №15. Досрочная волна 2018. Резервный день

2018-09-18
Разбор заданий резервного дня сдачи досрочного ЕГЭ 2018

Смотрите также задания №13; №14№16; №17№18; №19 

15. Решите неравенство 3^{x^2}\cdot 5^{x-1}\geq 3.

Читать далее

Задание №16. Досрочная волна 2018. Резервный день

2018-05-03
Разбор заданий резервного дня сдачи досрочного ЕГЭ 2018

Смотрите также задания №13; №14; №15№17№18; №19 

14. В выпуклом четырёхугольнике ABCD известны стороны и диагональ:

AB=3,BC=CD=5,AD=8,AC=7.

а) Докажите, что вокруг этого четырёхугольника можно описать окружность.
б) Найдите BD.

Читать далее

Задание №17. Досрочная волна 2018. Резервный день

2018-05-03
Разбор заданий резервного дня сдачи досрочного ЕГЭ 2018

Смотрите также задания №13; №14; №15№16№18; №19 

17. В регионе A среднемесячный доход на душу населения в 2014 году составлял 43740 рублей и ежегодно увеличивался на 25%. В регионе B среднемесячный доход на душу населения в 2014 году составлял 60 000 рублей. В течение трёх лет суммарный доход жителей региона B увеличивался на 17% ежегодно, а население увеличивалось на m% ежегодно. В 2017 году среднемесячный доход на душу населения в регионах A и B стал одинаковым. Найдите m.

Читать далее

Задание №18. Досрочная волна 2018. Резервный день

2018-05-10
Разбор заданий резервного дня сдачи досрочного ЕГЭ 2018

Смотрите также задания №13; №14; №15№16; №17№19 

18. Найдите все значения параметра a, при каждом из которых система уравнений

\begin{cases} x^2+y^2=a^2,& &xy=a^2-3a \end{cases}

имеет ровно два различных решения?

Читать далее

Задание №19. Досрочная волна 2018. Резервный день

2018-05-03
Разбор заданий резервного дня сдачи досрочного ЕГЭ 2018

Смотрите также задания №13; №14; №15№16; №17№18 

19. а) Существуют ли двузначные натуральные числа m и n такие, что

|\frac{m}{n}-\sqrt{2}|\leq \frac{1}{100}?

б) Существуют ли двузначные натуральные числа m и n такие, что

|\frac{m^2}{n^2}-2|\leq \frac{1}{10000}?

в) Найдите все возможные значения натурального числа n, при каждом из которых значение выражения |\frac{n+10}{n}-\sqrt2| будет наименьшим.

Читать далее

Задание №17 Т/Р №224 А. Ларина

2018-02-12

Смотрите также №13; №14; №15№16№18; №19 Тренировочной работы №224 А. Ларина.

17. Фермер получил кредит в банке под определенный процент годовых. Через год фермер в счет погашения кредита вернул в банк \frac{3}{4} от всей суммы, которую он должен был банку к этому времени, а еще через год в счет погашения кредита он внес в банк сумму, на 21% превышающую величину полученного кредита. Каков процент годовых по кредиту в банке?

Читать далее

Задание №15 Т/Р №224 А. Ларина

2018-02-12

Смотрите также №13; №14№16; №17№18; №19 Тренировочной работы №224 А. Ларина.

15. Решите неравенство

-3log_{(x-1)}\frac{1}{3}+log_{\frac{1}{3}}(x-1)>2|log_{\frac{1}{3}}(x-1)|. Читать далее

Задание №19 Т/Р №223 А. Ларина

2018-02-12

Смотрите также №13; №14; №15№16; №17№18 Тренировочной работы №224 А. Ларина.

19. а) Можно ли записать точный квадрат, использовав по 10 раз цифры 1,2,3?

б) Можно ли записать точный квадрат, использовав по 10 раз цифры 2,3,6?
в) Может ли сумма цифр точного квадрата равняться 1970?

Читать далее

Задание №14 Т/Р №224 А. Ларина

2018-02-12

Смотрите также №13№15№16; №17№18; №19 Тренировочной работы №224 А. Ларина.

14. В основании пирамиды TABCD лежит трапеция ABCD, в которой BC\parallel AD и  AD:BC=2. Через вершину T пирамиды проведена плоскость, параллельная прямой BC и пересекающая отрезок AB в точке M такой, что AM:MB=2. Площадь получившегося сечения равна 10,  а расстояние от ребра BC до плоскости сечения равно 4.

а) Докажите, что плоскость сечения делит объем пирамиды в отношении 7:20.

б) Найдите объем пирамиды.

Читать далее