08. Конус

2015-09-05

смотрите также 1 (куб, параллелепипед)2 (призмапризма II)3 (пирамидапирамида II)4 (составные многогранникисоставные многогранники II)5 (цилиндр+конус)6 (цилиндр)8 (шар).

Разбираем стереометрические задачи части В, которые могут встретится на ЕГЭ по математике

Сегодня в задачах – конус. Находим объем конуса, площадь поверхности.

 

Задача 1. 

Высота конуса равна 12, образующая равна 14. Найдите его объем, деленный на \pi.

Решение: + показать

Задача 2.

Конус получается при вращении равнобедренного прямоугольного треугольника ABC вокруг катета, равного 6. Найдите его объем, деленный на \pi.

Решение:   + показать

Задача 3. 

Длина окружности основания конуса равна 5, образующая равна 8. Найдите площадь боковой поверхности конуса.

Решение:  + показать

Задача 4. 

Во сколько раз увеличится площадь боковой поверхности конуса, если его образующую увеличить в 9 раз?

Решение:  + показать

Задача 5. 

Площадь боковой поверхности конуса в два раза больше площади основания. Найдите угол между образующей конуса и плоскостью основания. Ответ дайте в градусах.

Решение:  + показать

Задача 6. 

Площадь полной поверхности конуса равна 148. Параллельно основанию конуса проведено сечение, делящее высоту пополам. Найдите площадь полной поверхности отсеченного конуса.

Решение:  + показать

Задача 7.

Найдите объем V конуса, образующая которого равна 11 и наклонена к плоскости основания под углом 30°. В ответе укажите \frac{V}{\pi}.

Решение:  + показать

Задача 8.

Во сколько раз уменьшится объем конуса, если его высоту уменьшить в 6 раз?

Решение:  + показать

Задача 9.

Во сколько раз увеличится объем конуса, если его радиус основания увеличить в 4,5 раза?

Решение:  + показать

Задача 10.

Цилиндр и конус имеют общие основание и высоту. Найдите объем конуса, если объем цилиндра равен 45.

Решение:  + показать

Задача 11.

Диаметр основания конуса равен 66, а угол при вершине осевого сечения равен 90°. Вычислите объем конуса, деленный на \pi.

Решение:  + показать

Задача 12.

Конус описан около правильной четырехугольной пирамиды со стороной основания 3 и высотой 5. Найдите его объем, деленный на \pi.

Решение:  + показать

Задача 13.

Во сколько раз объем конуса, описанного около правильной четырехугольной пирамиды, больше объема конуса, вписанного в эту пирамиду?

Решение:  + показать

Задача 14.

Найдите объем V части конуса, изображенной на рисунке. В ответе укажите \frac{V}{\pi}.

Решение:  + показать

Задача 15.

Найдите объем V части конуса, изображенной на рисунке. В ответе укажите \frac{V}{\pi}.

Решение:  + показать

Задача 16.

Конус вписан в шар. Радиус основания конуса равен радиусу шара. Объем шара равен 156. Найдите объем конуса.

Решение:  + показать

Задача 17.

В сосуде, имеющем форму конуса, уровень жидкости достигает \frac{1}{2} высоты. Объём жидкости равен 54 мл. Сколько миллилитров жидкости нужно долить, чтобы полностью наполнить сосуд?

Решение:  + показать

Рассмотрено много задач. Пора и передохнуть… А потом – за тест!

–>+ показать

 

Вы можете пройти тест по Задачам №8, конус.

Печать страницы
Комментариев: 8
  1. Андрей

    Скажите пожалуйста,почему в 17 задаче вы сосуд рассматриваете как перевёрнутый конус вверх дном,а не наоборот.Если рассуждать логически то сосуд не устоит на высоте конуса и ответ в этой задачи получится совершенно другой

    [ Ответить ]
    • egeMax

      Андрей, расскажите какой ответ у вас получается? Очень интересно…

      [ Ответить ]
      • Андрей

        6,75

        [ Ответить ]
        • egeMax

          К данной задаче как раз-таки прилагается картинка с вершиной вниз.
          Андрей, мы не должны заботится в задаче о том, как удерживается сосуд (может его зажим какой держит, – нам-то какое дело…). Мне как раз-таки непонятно, как вы собираетесь наполнять сосуд в виде конуса, если поставите его на основание…

          [ Ответить ]
  2. Михаил

    В 5-ой задаче вместо 2пиR^2=пиRL должно быть пиR^2=2пиRL

    [ Ответить ]
    • egeMax

      Михаил, вы ошибаетесь!

      [ Ответить ]
  3. Наруто

    Объясните пожалуйста почему в пятой задачке 2пиR^2=пиRL а не 2пиRL=пиR^2, ведь по условию площадь боковой поверхности (пиRL) в два раза больше площади основания (пиR^2)

    [ Ответить ]
    • egeMax

      Наруто, вы сами себе противоречите…
      Если вы умножите, и без того бОльшую, площадь боковой поверхности, на 2, то как новое выражение сравняется с меньшим?

      [ Ответить ]
Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_bye.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_good.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_negative.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_scratch.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_wacko.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_yahoo.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_cool.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_heart.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_rose.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_smile.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_whistle3.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_yes.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_cry.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_mail.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_sad.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_unsure.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_wink.gif