Задания №12. Исследование функции

2016-06-12

 
Продолжение (начало здесь).
 
 
В заданиях №12  ЕГЭ по математике Вам предстоит производить элементарное исследование функции. Вы должны уметь находить точки экстремумов, экстремумы, наибольшие и наименьшие значения функций.
 
 

 Задание 1.

Най­ди­те наи­мень­шее зна­че­ние функ­ции y=x^3-15x^2+19 на от­рез­ке [5;15].

Решение: + показать

Задание 2.

Най­ди­те точку минимума функ­ции y=-\frac{x^2+25}{x}.

Решение: + показать

Задание 3.

Най­ди­те наи­мень­шее зна­че­ние функ­ции y=\frac{x^2+900}{x} на [3;40].

 Решение: + показать

Задание 4.

Най­ди­те точку мак­си­му­ма функ­ции y=6+12x-2x^{\frac{3}{2}}.

Решение: + показать

Задание 5.

Най­ди­те точку ми­ни­му­ма функ­ции y=(3x^2-15x+15)e^{x-15}.

Решение: + показать

Задание 6.

Най­ди­те наи­мень­шее зна­че­ние функ­ции y=(x-3)^2(x-6)-1 на  отрезке [4;6].

Решение: + показать

Задание 7.

Най­ди­те наи­боль­шее зна­че­ние функ­ции y=ln(x+4)^9-9x  на от­рез­ке [-3,5;0].

Решение: + показать

Задание 8.

Най­ди­те наи­боль­шее зна­че­ние функ­ции y=12\sqrt{2}cosx+12x-3\pi+9  на от­рез­ке [0;\frac{\pi}{2}].

Решение: + показать

Задание 9.

Най­ди­те наи­мень­шее зна­че­ние функ­ции y=-4x+2tgx+\pi+16 на от­рез­ке [-\frac{\pi}{3};\frac{\pi}{3}].

Решение: + показать

Задание 10.

Най­ди­те наи­боль­шее зна­че­ние функ­ции y=9cosx+15x-4  на от­рез­ке [-\frac{3\pi}{2};0] .

Решение: + показать

Задание 11.

Най­ди­те точку ми­ни­му­ма функ­ции y=(3-2x)cosx+2sinx+19, при­над­ле­жа­щую про­ме­жут­ку (0;\frac{\pi}{2}).

Решение: + показать

Задание 12.

Най­ди­те наи­мень­шее зна­че­ние функ­ции y=e^{2x}-11e^x-1  на от­рез­ке [-1;2].

Решение: + показать

* Замечание. Важно!

Не следует считать (могло сложиться такое мнение при разборе примеров выше), что наименьшее (наибольшее) значение функции на отрезке совпадает с минимумом (максимумом) на отрезке!

Например, на рисунке ниже наименьшее значение функции  на отрезке [a;b] достигается на конце отрезка [a;b], а именно, в точке x=b.

То есть, вообще говоря, при нахождении наименьшего значения функции на отрезке [a;b] следует выбрать наименьшую из величин:

1) y(x_{min}) (их может быть несколько) из рассматриваемого отрезка [a;b]

2) y(a),  y(b).

При нахождении наибольшего значения функции на отрезке [a;b] следует выбрать большую из величин:

1) y(x_{max}) (их может быть несколько) из рассматриваемого отрезка [a;b]

2) y(a),  y(b).

Но, если, например, на рассматриваемом отрезке функция имеет только один экстремум – минимум и мы ищем наименьшее значение, то отпадает необходимость находить значения функции на концах отрезка.

Аналогично в случае с нахождением наибольшего значения функции на отрезке, на котором содержится только один экстремум – максимум.

В случае же, когда на отрезке рассматриваемом функция не имеет экстремумов, то для нахождения наибольшего/наименьшего значений требуется лишь сравнить эти самые значения функции на концах отрезка и взять наибольшее/наименьшее из них.

 

Переменка! Отдохните… + показать

 

Вы можете пройти тест №2 по Задачам №12.

 

Печать страницы
комментариев 36
  1. Новичок

    Здравствуйте,Елена Юрьевна!На одном из сайтов увидела задание:
    Найдите точку минимума функции:y=(9-x)e^x+9.После преобразований производная получилась:(8-х)е^x+9.Не могли бы вы объяснить как получилось (8-х).Ведь я считала и получалось (10-х)

    [ Ответить ]
    • Новичок

      Это изменение как-то связано с тем что производная от (9-х)=-1?????

      [ Ответить ]
      • egeMax

        (9-x)'=9'-x'=0-1=-1.

        [ Ответить ]
    • egeMax

      ((9-x)e^x+9)'=((9-x)e^x)'+9'=
      =(9-x)'e^x+(9-x)(e^x)'=-1\cdot e^x+(9-x)e^x=
      =e^x(-1+9-x)=(8-x)e^x.

      [ Ответить ]
      • Новичок

        Большое спасибо!С наступающим!

        [ Ответить ]
  2. Наталья

    Спасибо! за подборку интересных заданий и разбор решений! Очень полезно!

    [ Ответить ]
    • egeMax

      :)

      [ Ответить ]
  3. Павел

    Нашел ошибку в задании 8.Вы нашли точку минимума, точка максимума равна 0.

    [ Ответить ]
    • egeMax

      Павел, ошибки нет. Я нашла именно точку максимума! Если у вас послезавтра экзамен, то вам срочно следует разобраться в этом вопросе)))

      [ Ответить ]
      • Павел

        я пошел против часовой стрелки… все ясно

        [ Ответить ]
  4. NoName

    2 задание с ошибкой. Неправильно показано поведение функции. Даже если подставить экстремумы, получим -(((-5)^2+25)/-5)=10, -(((5)^2+25)\5)=-10 -10 5-точка минимума, а не -5 ….Ну если я сам, конечно, не накосячил ).

    [ Ответить ]
    • NoName

      эм…я сам случайно стер или сайт блочит некоторые символы, имелось в виду -10 меньше 10, где -10-значение функции с аргументом x=5,а 10-значение с х=-5.

      [ Ответить ]
    • egeMax

      Ошибки в моих рассуждениях нет! Косяк – не мой. Ищите у себя ошибку.
      Возможно, вы потеряли минус…

      [ Ответить ]

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

14 − 12 =

//egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_bye.gif 
//egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_good.gif 
//egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_negative.gif 
//egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_scratch.gif 
//egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_wacko.gif 
//egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_yahoo.gif 
//egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_cool.gif 
//egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_heart.gif 
//egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_rose.gif 
//egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_smile.gif 
//egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_whistle3.gif 
//egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_yes.gif 
//egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_cry.gif 
//egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_mail.gif 
//egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_sad.gif 
//egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_unsure.gif 
//egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_wink.gif