Архив по категории: 02 Теория вероятностей ч.1

Задания №4. Теория вероятности. Часть 1

2021-09-11

При решении задач мы будем опираться на классическое определение вероятности события


Задача 1.На экзамене 40 вопросов, Коля не выучил 4 из них. Найдите вероятность того, что ему попадется выученный вопрос. 

Решение: + показать


Задача 2. В кармане у Серёжи было четыре конфеты — «Ласточка», «Красная шапочка», «Маска» и «Взлётная», а также ключи от квартиры. Вынимая ключи, Серёжа случайно выронил из кармана одну конфету. Найдите вероятность того, что потерялась конфета «Красная шапочка».

Решение: + показать


Задача 3. Фабрика выпускает сумки. В среднем на 200 качественных сумок приходится двадцать одна сумка со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых.

Решение: + показать


Задача 4.В фирме такси в данный момент свободно 35 машин: 11 красных, 17 фиолетовых и 7 зеленых. По вызову выехала одна из машин, случайно оказавшаяся ближе всего к заказчице. Найдите вероятность того, что к ней приедет зеленое такси.

Решение: + показать


Задача 5.На борту самолёта 16 мест рядом с запасными выходами и 20 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. достанется удобное место, если всего в самолёте 400 мест.

Решение: + показать


Задача 6. В случайном эксперименте бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 7 очков. Результат округлите до сотых.

Решение: + показать


Задача 7.В случайном эксперименте симметричную монету бросают четырежды. Найдите вероятность того, что при последнем броске выпал орел.

Решение: + показать


Задача 8.Научная конференция проводится в 3 дня. Всего запланировано 75 докладов — в первый день 27 докладов, остальные распределены поровну между вторым и третьим днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции?

Решение: + показать


Задача 9. Перед началом первого тура чемпионата по шашкам участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 шашистов, среди которых 3 участника из России, в том числе Василий Лукин. Найдите вероятность того, что в первом туре Василий Лукин будет играть с каким-либо шашистом из России?

Решение: + показать


Задача 10.В чемпионате мира учавствуют 20 команд. С помощью жребия их нужно разделить на пять групп по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп:

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5.

Капитаны команд тянут по одной карточке. Какова вероятность того, что команда Китая окажется в первой группе?

Решение: + показать


Задача 11.На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет меньше 4?

Решение: + показать


Задача 12.Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию А=«сумма очков равна 10»?

Решение: + показать


Задача 13.В классе 21 учащийся, среди них два друга — Вадим и Олег. Класс случайным образом разбивают на 3 равные группы. Найдите вероятность того, что Вадим и Олег окажутся в одной группе.

Решение: + показать


Задача 14.Вероятность того, что новый блендер в течение года поступит в гарантийный ремонт, равна 0,096. В некотором городе из 1000 проданных блендеров в течение года в гарантийную мастерскую поступило 102 штуки. На сколько отличается частота события «гарантийный ремонт» от его вероятности в этом городе?

Решение: + показать


Задача 15.Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали ходить. Найдите вероятность того, что часовая стрелка застыла, достигнув отметки 6, но не дойдя до отметки 9 часов.

Решение: + показать


Задача 16.За круг­лый стол на 5 сту­льев в слу­чай­ном по­ряд­ке рас­са­жи­ва­ют­ся 3 маль­чи­ка и 2 де­воч­ки. Най­ди­те ве­ро­ят­ность того, что обе де­воч­ки будут си­деть рядом.

Решение: + показать


Задача 17. За круглый стол на 101 стул в случайном порядке рассаживаются 99 мальчиков и 2 девочки. Найдите вероятность того, что между девочками будет сидеть один мальчик.

Решение: + показать


Задача 18.У Дины в копилке лежит 7 рублёвых, 5 двухрублёвых, 6 пятирублёвых и 2 десятирублёвых монеты. Дина наугад достаёт из копилки одну монету. Найдите вероятность того, что оставшаяся в копилке сумма составит менее 60 рублей.

Решение: + показать


Задача 19.Из множества натуральных чисел от 30 до 54 наудачу выбирают одно число. Какова вероятность того, что оно делится на 2?

Решение: + показать


Задача 20.Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Сапфир» играет три матча с разными командами. Найдите вероятность того, что в этих матчах команда «Сапфир» начнёт игру с мячом не более одного раза.

Решение: + показать


тест

Вы можете пройти тест по Задачам №4