!!Смотрите также сборник заданий 12 ЕГЭ !!
2024
1.1. (Пробник 2023) а) Решите уравнение $\frac{\sqrt3}{4}cos x(sinx+\sqrt2)=(sin^2x+\sqrt2sinx)cos^2x.$
б) Укажите корни этого уравнения, принадлежащие отрезку $[\frac{\pi}{2};2\pi].$
Решение Ответ: + показать
а) $\frac{\pi}{2}+\pi k;\frac {\pi}{6}+\pi k;\frac {\pi}{3}+\pi k, k\in Z$; б) $ \frac{\pi}{2};\frac{7\pi}{6};\frac{4\pi}{3};\frac{3\pi}{2};$.
1.2. (Пробник 2023) а) Решите уравнение $\frac{\sqrt3}{4}sin x(cos-\sqrt2)=(\sqrt2 cosx-cos^2x)sin^2x.$
б) Укажите корни этого уравнения, принадлежащие отрезку $[-3\pi;-\frac{3\pi}{2}].$
Ответ: + показать
а) $\pi k,-\frac{\pi}{6}+\pi k;-\frac {\pi}{3}+\pi k, k\in Z$; б) $-\pi;-2\pi;-\frac{7\pi}{3};-\frac{13\pi}{6}.$
2023
1.1. (ЕГЭ 2023, Досрок)
а) Решите уравнение: $\log _{3}\left( \sqrt{2}\cos \left( \dfrac{\pi }{2}-x\right) +\sin 2x+81\right) =4.$
б) Найдите все корни этого уравнения, принадлежащие отрезку $[ \pi ;\frac{5 \pi }{2}]$.
Решение: Ответ: + показать
а) ${\pi k;\frac {3\pi}{4}+2\pi k;\frac {5\pi}{4}+2\pi k, k\in Z$; б) $\pi; \frac{5\pi}{4};2\pi$.
1.2. (ЕГЭ 2023, Досрок)
б) Найдите все корни этого уравнения, принадлежащие отрезку $[-\frac{7\pi}{2};-2\pi].$
Ответ: + показать
а) $\pm \frac{\pi}{6}+2\pi k, k\in Z$; б) $\frac{11\pi}{6}; \frac{13\pi}{6}$
2.1. (ЕГЭ 2023, Досрок)
а) Решите уравнение $log_{13}(cos2x-9\sqrt2 cosx-8)=0.$
б) Найдите все корни этого уравнения, принадлежащие отрезку $[-2\pi;-\frac{\pi}{2}].$
Решение Ответ: + показать
а) $\pm \frac{3\pi}{4}+2\pi k, k\in Z$; б) $-\frac{5\pi}{4}; -\frac{3\pi}{4}$
2.2. (ЕГЭ 2023, Досрок)
а) ) Решите уравнение $log_8(7\sqrt3 sinx-cos2x-10)=0.$
б) Найдите все корни этого уравнения, принадлежащие отрезку $[3\frac{\pi}{2};3\pi].$
Ответ: + показать
а) $ \frac{\pi}{3}+2\pi k, \frac{2\pi}{3}+2\pi k, k\in Z$; б) $-\frac{8\pi}{3}; -\frac{7\pi}{3}$
3.1. (ЕГЭ 2023, Пробник)
а) Решите уравнение: $\sqrt{2cos^2x-4cosx+3}=\sqrt{cosx+6}.$
б) Найдите все корни этого уравнения, принадлежащие отрезку $[\frac{7 \pi }{2};5\pi]$.
Решение Ответ: + показать
а) ${\pm \frac {2\pi}{3}+2\pi k; \frac {5\pi}{4}+2\pi k, k\in Z$; б) $\frac{14\pi}{3}$.
3.2. (ЕГЭ 2023, Пробник)
а) Решите уравнение $\sqrt{4cos^2x+9cosx+6}=\sqrt{cosx+11}.$
б) Найдите все корни этого уравнения, принадлежащие отрезку $[-\frac{7\pi}{2};-2\pi].$
Ответ: + показать
а) $\pm \frac{\pi}{3}+2\pi k, k\in Z$; б) $\frac{11\pi}{6}; -\frac{7\pi}{6}$.
4.1. (ЕГЭ 2023, Досрок)
а) Решите уравнение: $log_4(2^{2x}-\sqrt3cosx-sin2x)=x$.
б) Найдите все корни этого уравнения, принадлежащие отрезку $[2\pi;\frac{7\pi}{2}].$
Решение Ответ: + показать
а) ${-\frac {\pi}{3}+2\pi k; -\frac {2\pi}{3}+2\pi k,\frac{\pi}{2}+\pi k, k\in Z$; б) $\frac{5\pi}{2};\frac{10\pi}{3};\frac{7\pi}{2}$.
4.2. (ЕГЭ 2023, Досрок)
а) Решите уравнение: $log_4(2^{2x}-\sqrt3cosx-6sin^2x)=x$.
б) Найдите все корни этого уравнения, принадлежащие отрезку $[\frac{5\pi}{2};4\pi].$
Ответ: + показать
а) ${\frac {5\pi}{6}+2\pi k; \frac {7\pi}{6}+2\pi k, k\in Z$; б)$\frac{17\pi}{6};\frac{19\pi}{6}$.
5.1. (ЕГЭ 2023, Статград)
а) Решите уравнение: $\large \frac{3tg^2x-1}{2cosx+\sqrt3}=0.$
б) Найдите все корни этого уравнения, принадлежащие отрезку $[\frac{3\pi}{2};3\pi].$
Решение Ответ: + показать
а) ${\pm\frac {\pi}{6}+2\pi k , k\in Z$; б) $\frac{11\pi}{6};\frac{13\pi}{6}$.
5.2. (ЕГЭ 2023, Статград)
а) Решите уравнение: $\large \frac{3tg^2x-1}{2sinx+1}=0.$
б) Найдите все корни этого уравнения, принадлежащие отрезку $[-\frac{5\pi}{2};-\pi].$
Ответ: + показать
а) ${ \frac {\pi}{6}+2\pi k,\frac {5\pi}{6}+2\pi k, k\in Z$; б)$-\frac{11\pi}{6};-\frac{7\pi}{6}$.
6.1. (ЕГЭ 2023) а) Решите уравнение:
$2sin^2xcosx+\sqrt3 cos^2x=\sqrt3.$
б) Найдите все корни этого уравнения, принадлежащие отрезку $[\frac{5 \pi }{2};4\pi]$.
Решение Ответ: + показать
а) $\pi n, \pm\frac{\pi}{6}+2\pi n, n\in Z$; б) $3\pi;\frac{23\pi}{6};4\pi.$
6.2. (ЕГЭ 2023) а) Решите уравнение:
$sinxcos2x-\sqrt2cos^2x+sinx=0.$
б) Найдите все корни этого уравнения, принадлежащие отрезку $[\frac{3 \pi }{2};3\pi]$.
Ответ: + показать
а) $\frac{\pi}{2}+\pi n, \frac{\pi}{4}+2\pi n, \frac{3\pi}{4}+2\pi n, n\in Z$; б) $\frac{3\pi}{2};\frac{9\pi}{4};\frac{5\pi}{2};\frac{11\pi}{4}.$
7.1. (ЕГЭ 2023) а) Решите уравнение:
$2sin^3x=\sqrt2 cos^2x+2sinx.$
б) Найдите все корни этого уравнения, принадлежащие отрезку $[-4\pi;-\frac{5 \pi }{2}]$.
Решение Ответ: + показать
а) $\frac{\pi}{2}+\pi n, -\frac{\pi}{4}+2\pi n, \frac{3\pi}{4}+2\pi n, n\in Z$; б) $-\frac{7\pi}{2};-\frac{11\pi}{4};-\frac{5\pi}{2}.$
7.2. (ЕГЭ 2023) а) Решите уравнение:
$2cos^3x=\sqrt3 sin^2x+cosx.$
б) Найдите все корни этого уравнения, принадлежащие отрезку $[-3\pi;-\frac{3 \pi }{2}]$.
Ответ: + показать
а) $\pm\frac{\pi}{6}+2\pi n, n\in Z$; б) $-\frac{13\pi}{6};-\frac{11\pi}{6}.$
8.1. (ЕГЭ 2023, резерв) а) Решите уравнение:
$sin2x+\sqrt2sinx=2sin(\frac{\pi}{2}-x)+\sqrt2$
б) Найдите все корни этого уравнения, принадлежащие отрезку $[\pi;\frac{5 \pi }{2}]$.
Решение Ответ: + показать
а) $\frac{\pi}{2}+2\pi n, \pm\frac{3\pi}{4}+2\pi n,n\in Z$; б) $\frac{5\pi}{4};\frac{5\pi}{2}.$
8.2. (ЕГЭ 2023, резерв) а) Решите уравнение:
$sin2x=2sinx+sin(x+\frac{3\pi}{2})+1$
б) Найдите все корни этого уравнения, принадлежащие отрезку $[-4\pi;-\frac{5 \pi }{2}]$.
Ответ: + показать
а) $2\pi n, -\frac{5\pi}{6}+2\pi n, -\frac{\pi}{6}+2\pi n,n\in Z$; б) $-4\pi;-\frac{17\pi}{6}.$
9.1. (ЕГЭ 2023, резерв) а) Решите уравнение:
$log_3x\cdot log_3(4x^2-1)=log_3\frac{x(4x^2-1)}{3}$
б) Найдите все корни этого уравнения, принадлежащие отрезку $[log_52;log_527].$
Решение Ответ: а) $1;3$ б) $1$.
9.2. (ЕГЭ 2023, резерв) а) Решите уравнение:
$log_4x\cdot log_4(\frac{x^2-1}{2})=log_4\frac{x(x^2-1)}{8}$
б) Найдите все корни этого уравнения, принадлежащие отрезку $[log_34;log_347].$
Ответ: а) $3;4$ б) $3$.
До 2023
-11. (Реальный ЕГЭ, 2021)
а) Решите уравнение $4cos^3x-2\sqrt3 cos2x+3cosx=2\sqrt3;$
б) Укажите корни этого уравнения, принадлежащие отрезку $[2\pi; 3,5\pi].$ Решение
-10. (Реальный ЕГЭ, 2021)
а) Решите уравнение $2sin^3x+\sqrt2cos2x+sinx=\sqrt2;$
б) Найдите его корни на промежутке $[-3,5\pi;-2\pi].$ Решение
-9. (Демо ЕГЭ, 2020)
a) Решите уравнение $2sin(x+\frac{\pi}{3})+cos2x=\sqrt3cosx+1.$
б) Найдите его корни на промежутке $[-3\pi;-1,5\pi]$. Видеорешение
-8. (Реальный ЕГЭ, 2019)
a) Решите уравнение $cos2x+\sqrt2cos(\frac{\pi}{2}+x)+1=0.$
б) Найдите его корни на промежутке $[2\pi;3,5\pi]$. Решение
-7. (Реальный ЕГЭ, 2019)
a) Решите уравнение $cos2x+sin^2x=\frac{3}{4}.$
б) Найдите его корни на промежутке $[\pi;2,5\pi]$. Решение
-6. (Реальный ЕГЭ, 2018)
a) Решите уравнение $sinx+2sin(2x+\frac{\pi}{6})=\sqrt 3 sin2x+1.$
б) Найдите его корни на промежутке $[-3,5\pi;-2\pi]$. Решение
-5. (Досрочный резервный ЕГЭ, 2018)
a) Решите уравнение $\frac{sinx}{sin^2\frac{x}{2}}=4cos^2\frac{x}{2}.$
б) Найдите его корни на промежутке $[-\frac{9\pi}{2};-3\pi]$. Решение
-4. (Досрочный ЕГЭ, 2018)
a) Решите уравнение $\sqrt{x^3-4x^2-10x+29}=3-x.$
б) Укажите все корни этого уравнения, принадлежащие промежутку $[-\sqrt3;\sqrt{30}]$. Решение
-3. (Резервный ЕГЭ, 2017)
а) Решите уравнение $log_2(x^2-14x)=5.$
б) Найдите корни уравнения из отрезка $[log_30,1;5\sqrt 10].$ Решение
-2. (Реальный ЕГЭ, 2017)
а) Решите уравнение $8\cdot 16^{cosx}-6\cdot 4^{cosx}+1=0.$
б) Найдите корни уравнения из отрезка $[\frac{3\pi}{2};3\pi].$ Решение
-1. (Реальный ЕГЭ, 2017)
а) Решите уравнение $log_4(2^{2x}-\sqrt3cosx-sin2x)=x.$
б) Найдите корни уравнения из отрезка $[-\frac{\pi}{2};\frac{3\pi}{2}].$ Решение
0. (Досрочн. ЕГЭ, 2017)
а) Решите уравнение $27^x-4\cdot 3^{x+2}+3^{5-x}=0.$
б) Укажите корни этого уравнения, принадлежащие отрезку $[log_74;log_716].$ Решение
1. (Резервн. ЕГЭ, 2016)
а) Решите уравнение $sin2x+2cos(x-\frac{\pi}{2})=\sqrt3cosx+\sqrt3.$
б) Укажите корни этого уравнения, принадлежащие отрезку $[-3\pi;-\frac{3\pi}{2}].$ Решение
2. (ЕГЭ, 2016)
а) Решите уравнение: $2log_2^2(2sinx)-7log_2(2sinx)+3=0.$
б) Укажите корни этого уравнения, принадлежащие отрезку $[\frac{\pi}{2};2\pi].$ Решение
3. (Т/Р, апрель 2016)
а) Решите уравнение $\sqrt{2}sin^2(\frac{\pi}{2}+x)=-cosx.$
б) Найдите все корни этого уравнения, принадлежащие отрезку $[-\frac{5\pi}{2};-\pi].$ Решение
4. (Досрочн. ЕГЭ, 2016)
а) Решите уравнение $8^x-7\cdot 4^x-2^{x+4}+112=0;$
б) Укажите корни этого уравнения, принадлежащие отрезку $[log_25;log_211].$ Решение
5. (ЕГЭ, 2015)
а) Решите уравнение $2cos2x+4cos(\frac{3\pi}{2}-x)+1=0$.
б) Найдите все корни этого уравнения, принадлежащие промежутку $[\frac{3\pi}{2};3\pi].$ Решение
6. (Диагностическая, 2015)
а) Решите уравнение $cos2x-3cosx+2=0.$
б) Найдите все корни уравнения, принадлежащие отрезку $[-4\pi;-\frac{5\pi}{2}].$ Решение
7. (ДЕМО, 2014)
a) Решите уравнение $cos2x=1-cos(\frac{\pi}{2}-x)$.
б) Найдите все корни этого уравнения, принадлежащие промежутку $[-\frac{5\pi}{2};-\pi)$. Решение
8. (Диагностическая, 2014)
a) Решите уравнение $\frac{2sin^2x-\sqrt3sinx}{2cosx+1}=0.$
б) Найдите все корни этого уравнения, принадлежащие отрезку $[2\pi;\frac{7\pi}{2}].$ Решение
9. (Диагностическая, 2013)
a) Решите уравнение: $4sin^42x+3cos4x-1=0.$
б) Найдите все корни этого уравнения, принадлежащие отрезку $[\pi;\frac{3\pi}{2}].$ Решение
10. (Диагностическая, 2013)
а) $7\cdot 9^{x^2-3x+1}+5\cdot 6^{x^2-3x+1}-48\cdot 4^{x^2-3x}=0$
б) Найдите все корни этого уравнения, принадлежащие отрезку [-1; 2]. Решение
11. (ЕГЭ, 2013)
a) Решить уравнение $15^{Cosx}=3^{Cosx}\cdot 5^{Sinx}$.
б) Найдите все корни этого уравнения, принадлежащие отрезку $[5\pi; \frac{13\pi}{2}]$. Решение
12. (Т/Р А. Ларина)
а) Решите уравнение $\sqrt{4cos2x-2sin2x}=2cosx.$
б) Укажите корни этого уравнения, принадлежащие отрезку $[-\frac{13\pi}{6};-\frac{\pi}{2}].$
Решение
13. (Т/Р А. Ларина)
а) Решите уравнение $\sqrt{1-cos2x}=sin2x.$
б) Укажите корни этого уравнения, принадлежащие отрезку $[-\frac{3\pi}{2};0].$ Решение
14. (Т/Р А. Ларина)
а) Решите уравнение $sin2x=1+\sqrt2cosx+cos2x.$
б) Укажите корни этого уравнения, принадлежащие отрезку $[0;\pi].$ Решение
15. (Т/Р А. Ларина)
а) Решите уравнение $\frac{1+\sqrt3}{2}sin2x=(\sqrt3-1)cos^2x+1.$
б) Укажите корни этого уравнения, принадлежащие отрезку $[\frac{3\pi}{2};3\pi].$ Решение
16. (Т/Р А. Ларина)
а) Решите уравнение $(cos2x-1)^2=10sin^2x-4.$
б) Укажите корни этого уравнения, принадлежащие отрезку $[-\frac{3\pi}{2};-\frac{\pi}{6}].$ Решение
17. (Т/Р А. Ларина)
а) Решите уравнение $log_{-cosx}(1-0,5sinx)=2.$
б) Найдите его корни, принадлежащие отрезку $[14\pi;16\pi].$ Решение
18. (Т/Р А. Ларина)
a) Решите уравнение $4^{sinx\cdot tgx}\cdot 2^{\frac{1}{cosx}}=8^{tgx}.$
б) Укажите корни этого уравнения, принадлежащие интервалу $[2,5\pi; 4\pi].$ Решение
19. (Т/Р А. Ларина)
a) Решите уравнение $\frac{1-4cosx}{3+4cosx}=tg^2x.$
б) Укажите корни этого уравнения, принадлежащие интервалу $[\frac{3\pi}{4}; 3\pi].$ Решение
20. (Т/Р А. Ларина)
a) Решите уравнение $sinx(4sinx-1)=2+\sqrt3 cosx.$
б) Укажите корни этого уравнения, принадлежащие отрезку $[-\frac{7\pi}{2}; -2\pi].$ Решение
21. (Т/Р А. Ларина)
a) Решите уравнение $\sqrt{15\cdot 2^{sinx}-4}=3\cdot 2^{sinx}.$
б) Укажите корни этого уравнения, принадлежащие отрезку $[-\pi; \frac{\pi}{2}].$ Решение
22. (Т/Р А. Ларина)
а) Решите уравнение $2015^x+2016\cdot 2015^{1-x}-4031=0$.
б) Укажите корни уравнения, принадлежащие отрезку $[log_{2017}2016;log_{2016}2017].$ Решение
23. (Т/Р А. Ларина)
а) Решите уравнение $sin(134\pi-15x)+sin(90x+\frac{135\pi}{2})=2$.
б) Укажите корни уравнения, принадлежащие промежутку $[-\frac{3\pi}{7};\frac{3\pi}{8}].$ Решение
24. (Т/Р А. Ларина)
а) Решите уравнение $sin(133\pi-21x)\cdot sin(14x+\frac{133\pi}{2})=1$.
б) Укажите корни уравнения, принадлежащие промежутку $[-\frac{\pi}{2};\frac{3\pi}{8}).$ Решение
25. (Т/Р А. Ларина)
а) Решите уравнение $\frac{sin(2x-132\pi)-cosx-2\sqrt2sinx+\sqrt2}{\sqrt3-tg(132\pi+2x)}=0$.
б) Укажите корни уравнения, принадлежащие промежутку $(-\frac{19\pi}{2};-4\pi].$ Решение
26. (Т/Р А. Ларина)
а) Решите уравнение $\frac{sin2x-2sin^2(\frac{131\pi}{2}+x)}{\sqrt[4]{-sinx}}=0.$
б) Укажите корни уравнения, принадлежащие промежутку $[-\frac{17\pi}{2};-\frac{3\pi}{2}).$ Решение
27. (Т/Р А. Ларина)
Найдите все корни уравнения $sin(2^x)=1,$ удовлетворяющие неравенству $|2^x-1|+|2^x-8|\leq 7.$ Решение
28. (Т/Р А. Ларина)
a) Решите уравнение $\sqrt{tgx}\cdot (2sin^2x-sinx-1)=0.$
б) Укажите корни уравнения, принадлежащие отрезку $[\frac{\pi}{2};2\pi].$ Решение
29. (Т/Р А. Ларина)
a) Решите уравнение $2sin^2x+cos4x=0.$
б) Укажите корни уравнения, принадлежащие отрезку $[-3\pi;-2\pi].$ Решение
30. (Т/Р А. Ларина)
a) Решите уравнение $\frac{1+cos2x+\sqrt2cosx}{1+sinx}=0.$
б) Укажите корни уравнения, принадлежащие отрезку $[\frac{3\pi}{2};3\pi].$ Решение
31. (Т/Р А. Ларина)
a) Решите уравнение $5\cdot (\frac{1}{5})^{cos2x}=5^{sin2x}.$
б) Укажите корни уравнения, принадлежащие интервалу $(-\frac{7\pi}{2};-2\pi).$ Решение
32. (Т/Р А. Ларина)
a) Решите уравнение $\sqrt{sinx+3}=-2sinx.$
б) Укажите корни, принадлежащие отрезку $[0;2\pi].$ Решение
33. (Т/Р А. Ларина)
a) Решите уравнение $2cos^2x-2sin2x+1=0.$
б) Укажите его корни, принадлежащие отрезку $[\frac{\pi}{2};2\pi].$ Решение
34. (Т/Р А. Ларина)
а) Решите уравнение $cos3\pi x+sin\frac{3\pi(x+1)}{2}=4(cos\frac{3\pi x}{2}-1).$
б) Укажите его корни из отрезка $[-7;-3].$ Решение
35. (Т/Р А. Ларина)
а) Решите уравнение $2cos2x+8sinx=5.$
б) Укажите корни этого уравнения, принадлежащие отрезку $[\frac{5\pi}{2};5\pi].$ Решение
36. (Т/Р А. Ларина)
а) Решите уравнение $2cos^3x+1=cos^2(\frac{3\pi}{2}-x).$
б) Укажите корни этого уравнения, принадлежащие промежутку $(-3\pi;-\frac{3\pi}{2}).$ Решение
37. (Т/Р А. Ларина)
а) Решите уравнение $(0,25)^{cos(\frac{3\pi}{2}+x)}=2^{cos2x-1}.$
б) Укажите корни этого уравнения, принадлежащие отрезку $[-\frac{15\pi}{4};-3\pi].$ Решение
38. (Т/Р А. Ларина)
а) Решите уравнение $tg(1-x)+tg2x=0.$
б) Найдите его корни на отрезке $[2;8].$ Решение
39. (Т/Р А. Ларина)
а) Решите уравнение $\sqrt{sinx\cdot cosx}=-cosx.$
б) Найдите его корни на отрезке $[\frac{\pi}{2};\frac{5\pi}{2}].$ Решение
40. (Т/Р А. Ларина)
а) Решите уравнение $(1-cos2x)(ctgx-\sqrt3)=3sinx-\sqrt3cosx.$
б) Найдите его корни, принадлежащие промежутку $[-2\pi;-\frac{\pi}{2}].$ Решение
41. (Т/Р А. Ларина)
a) Решите уравнение $\frac{2}{4^{sin^2x}}=\frac{4^{sinx}}{2^{2cosx}}.$
б) Найдите его корни, принадлежащие промежутку $[\frac{3\pi}{2};3\pi].$ Решение
42. (Т/Р А. Ларина)
а) Решите уравнение $cos4x-6cos2xcosx-4sin^2x+5=0$.
б) Найдите его корни, принадлежащие промежутку $[\pi;\frac{5\pi}{2}].$ Решение
43. (Т/Р А. Ларина)
a) Решите уравнение $cosx+sinx+sin2x+1=0.$
б) Найдите его корни, принадлежащие отрезку $[\frac{\pi}{2};2\pi].$ Решение
44. (Т/Р А. Ларина)
а) Решите уравнение $\frac{ctgx+3}{tg(x+\frac{\pi}{6})}=ctg\frac{5\pi}{6}$.
б) Найдите его корни, принадлежащие промежутку $[0;\frac{3\pi}{2}].$ Решение
45. (Т/Р А. Ларина)
а) Решите уравнение $log_{-cosx}2\cdot log_2(sinx)=2$.
б) Укажите корни этого уравнения, принадлежащие отрезку $[\frac{17\pi}{6};\frac{19\pi}{4}]$. Решение
46. (Т/Р А. Ларина)
а) Решите уравнение $\frac{2cos^2x+\sqrt3cosx}{2sinx+1}=0.$
б) Укажите корни этого уравнения, принадлежащие промежутку $[2\pi;\frac{7\pi}{2}).$ Решение
47. (Т/Р А. Ларина)
а) Решите уравнение $sin7x-sinx=\sqrt2cos4x.$
б) Укажите корни этого уравнения, принадлежащие отрезку $[-3\pi;-2\pi].$ Решение
48. (Т/Р А. Ларина)
а) Решите уравнение $25^{cos(\frac{3\pi}{2}+x)}=5^{1-cos2x}.$
б) Укажите корни этого уравнения, принадлежащие интервалу $(-5\pi;-\frac{3\pi}{2}).$ Решение
49. (Т/Р А. Ларина)
a) Решите уравнение $2sin^2x+cos4x=0$.
б) Укажите корни этого уравнения, принадлежащие отрезку $[\frac{5\pi}{2};3\pi].$ Решение
50. (Т/Р А. Ларина)
а) Решите уравнение $\frac{|cosx|}{cosx}+2=2sinx$.
б) Укажите корни этого уравнения, принадлежащие отрезку $[8,5;14,5].$ Решение
51. (Т/Р А. Ларина)
a) Решите уравнение $\sqrt{sin2x}=\sqrt{\sqrt3cosx}.$
б) Найдите его корни, принадлежащие отрезку $[4,5;7,5].$ Решение
52. (Т/Р А. Ларина)
а) Решите уравнение $cos2x-\sqrt3sin2x=1.$
б) Найдите его корни, принадлежащие отрезку $[4\pi;5,5\pi].$ Решение
53. (Т/Р А. Ларина)
а) Решите уравнение $(2cos^2x-3cosx-2)log_3(tgx)=0.$
б) Укажите корни уравнения, принадлежащие отрезку $[\frac{\pi}{2};2\pi]$. Решение
54. (Т/Р А. Ларина)
a) Решите уравнение $log_{100}(cos2x+cos\frac{x}{2})+log_{\frac{1}{100}}(sinx+cos\frac{x}{2})=0.$
б) Найдите его корни, принадлежащие отрезку $[\frac{\pi}{2};2\pi].$ Решение
55. (Т/Р А. Ларина)
a) Решите уравнение $\frac{cos6x}{cos2x}+\frac{sin6x}{sin2x}=2cos4x-\sqrt3.$
б) Найдите его корни, принадлежащие отрезку $[2;4].$ Решение
56. (Т/Р А. Ларина)
а) Решите уравнение $2\sqrt3sin^2(\frac{11\pi}{2}+x)=sin2x.$
б) Укажите его корни из интервала $(-\frac{11\pi}{2};-4\pi).$ Решение
57. (Т/Р А. Ларина)
а) Решите уравнение $\frac{1-cos2x-sinx}{cosx-1}=0.$
б) Укажите его корни, принадлежащие интервалу $(\frac{5\pi}{2};5\pi).$ Решение
58. (Т/Р А. Ларина)
a) Решите уравнение $log_2(2-cosx)=1+2log_2(-sinx)$.
б) Укажите корни, принадлежащие отрезку $[\pi;\frac{5\pi}{2}].$ Решение
59. (Т/Р А. Ларина)
a) Решите уравнение $\sqrt{7-8sinx}=-2cosx$.
б) Укажите корни, принадлежащие отрезку $[-\frac{3\pi}{2};2\pi].$ Решение
60. (Т/Р А. Ларина)
a) Решите уравнение $\sqrt{1+sinx}+cosx=0;$
б) Найдите все корни на промежутке $[-\frac{\pi}{2};\frac{3\pi}{2}).$ Решение
61. (Т/Р А. Ларина)
a) Решите уравнение $\frac{3^{cosx}}{9^{sinxcosx}}=3\cdot 9^{cos(\frac{\pi}{2}+x)};$
б) Укажите корни, принадлежащие отрезку $[\frac{9\pi}{2};6\pi].$ Решение
62. (Т/Р А. Ларина)
a) Решите уравнение $6tg^2\pi x-\frac{13}{cos\pi x}+8=0.$
б) Укажите корни уравнения, принадлежащие интервалу $(-5;1).$ Решение
63. (Т/Р А. Ларина)
a) Решите уравнение $4sin^2x+4cos(\frac{\pi}{2}+x)=3sin\frac{\pi}{2}.$
б) Укажите корни этого уравнения, принадлежащие интервалу $(-\frac{3\pi}{2};3\pi).$ Решение
64. (Т/Р А. Ларина)
а) Решите уравнение $\sqrt{11-8cos^4x-4sinxcosx}=3sinx+cosx$.
б) Найдите все корни уравнения на отрезке $[-\frac{\pi}{2};\frac{5\pi}{2}].$ Решение
65. (Т/Р А. Ларина)
а) Решите уравнение $(1+tg^2x)sinx-tg^2x+1=0.$
б) Найдите все корни уравнения на отрезке [− 3;2]. Решение
66. (Т/Р А. Ларина)
а) Решите уравнение $sin2x+cosx+2sinx=-1.$
б) Найдите все корни на промежутке (0; 5). Решение
67. (Т/Р А. Ларина)
а) Решите уравнение $\sqrt{5sinx+cos2x}+2cosx=0;$
б) Найдите все корни на промежутке $[-2\pi;-\frac{\pi}{2}]$. Решение
68. (Т/Р А. Ларина)
а) Решите уравнение $(1+2sinx)sinx=sin2x+cosx$.
б) Найдите все корни на промежутке $[-\frac{3\pi}{2};\pi].$ Решение
69. (Т/Р А. Ларина)
a) Решите уравнение $1-sin2x=-(sinx+cosx)$,
б) Найдите все корни на промежутке $[-\frac{3\pi}{2};\pi ]$. Решение
70. (Т/Р А. Ларина)
а) Решите уравнение $2cosx-3\sqrt{2cosx}+2=0.$
б) Укажите корни этого уравнения, принадлежащие промежутку $[-\frac{7\pi}{2};-2\pi]$. Решение
71. (Т/Р А. Ларина)
Дано уравнение $(2x-2)^2\cdot (x+1)^2-\sqrt2(x^2-1)-6=0.$
а) Решите уравнение.
б) Укажите корни этого уравнения, принадлежащие промежутку $[-\sqrt2;\sqrt[3]{4}]$. Решение
72. (Т/Р А. Ларина)
Дано уравнение $625^x-6\cdot 125^x+9\cdot 25^x=4\cdot 25^x-24\cdot 5^x+36.$
а) Решите уравнение.
б) Укажите его корни из отрезка $[\frac{1}{3};\frac{1}{2}]$. Решение
73. (Т/Р А. Ларина)
Дано уравнение $|cosx+1|=cos2x+2.$
а) Решите уравнение.
б) Укажите его корни из отрезка $[-\frac{7\pi}{2};-2\pi]$. Решение
74. (Т/Р А. Ларина)
Дано уравнение $log_3^2(-tgx)-log_3\sqrt{-tgx}=0.$
а) Решите уравнение.
б) Укажите его корни из интервала $(4\pi;\frac{11\pi}{2})$. Решение
75. (Т/Р А. Ларина)
Дано уравнение $\frac{cos2x+cosx+1}{sinx-1}=0.$
а) Решите уравнение.
б) Укажите его корни из отрезка $[-\frac{9\pi}{2};-3\pi]$. Решение
76. (Т/Р А. Ларина)
Дано уравнение $sin3x=sin2x+sinx.$
а) Решите уравнение.
б) Укажите его корни из отрезка $[5\pi; \frac{13\pi}{2}]$. Решение
77. (Т/Р А. Ларина)
Дано уравнение $sin2x\cdot cos4x=1.$
а) Решите уравнение.
б) Укажите его корни из отрезка $[2; 4]$. Решение
78. (Т/Р А. Ларина)
Дано уравнение $(25^{sinx})^{cos2x}=5^{sin(\pi-x)}.$
а) Решите уравнение.
б) Укажите его корни из отрезка $[-\frac{5\pi}{4}; -\frac{\pi}{4}]$. Решение
79. (Т/Р А. Ларина)
Дано уравнение $log_{2cos^2x}(3-3sinx)=1.$
а) Решите уравнение.
б) Укажите его корни из отрезка $[\frac{13\pi}{2}; 8\pi]$. Решение
80. (Т/Р А. Ларина)
Дано уравнение $9^{sinx\cdot tgx}\cdot 27^{tgx}=(\frac{1}{3})^{\frac{1}{cosx}}.$
а) Решите уравнение.
б) Укажите его корни из отрезка $[6\pi; 7,5\pi]$. Решение
81. (Т/Р А. Ларина)
Дано уравнение $(2sinx-\sqrt2)\sqrt{-cosx}=0.$
а) Решите уравнение.
б) Найдите наибольший отрицательный корень. Решение
82. (Т/Р, 2017)
а) Решите уравнение $\frac{4^{sin2x}-2^{2\sqrt3sinx}}{\sqrt{7sinx}}=0.$
б) Найдите все его корни, принадлежащие отрезку $[-\frac{13\pi}{2};-5\pi].$ Решение
83. (Т/Р А. Ларина)
Дано уравнение $log_2(sin2x)+log_{\frac{1}{2}}(-cosx)=\frac{1}{2}.$
а) Решите уравнение.
б) Найдите решения, принадлежащие промежутку $[-\frac{7\pi}{4};\frac{11\pi}{4}]$. Решение
84. (Т/Р А. Ларина)
Дано уравнение $\sqrt{log_{\sqrt x}5x}\cdot log_5x=-2.$
а) Решите уравнение.
б) Найдите натуральное число $n,$ такое, что $x_0\in (\frac{lg2}{n+1};\frac{lg2}{n}),$ где $x_0$ – корень уравнения. Решение
85. (Т/Р А. Ларина)
Дано уравнение $\frac{sin2x-1+2cosx-sinx}{\sqrt{-sinx}}=0.$
а) Решите уравнение.
б) Найдите корни этого уравнения, принадлежащие отрезку $[\frac{5\pi}{2};4\pi]$. Решение
86. (Т/Р А. Ларина)
Дано уравнение $2ctg^2x+\frac{3}{sinx}=0.$
а) Решите уравнение.
б) Найдите корни этого уравнения, принадлежащие отрезку $[16\pi;18\pi]$. Решение
87. (Т/Р А. Ларина)
Дано уравнение $\frac{2\sqrt 3cos^2x+sinx}{2cosx-1}=0.$
а) Решите уравнение.
б) Найдите корни этого уравнения, принадлежащие отрезку $[3\pi;\frac{9\pi}{2}]$. Решение
88. (Т/Р А. Ларина)
Дано уравнение $\frac{2}{cos(\pi -x)}-tg^2x=1.$
а) Решите уравнение.
б) Найдите корни этого уравнения, принадлежащие отрезку $[-3\pi;-\frac{3\pi}{2}]$. Решение
89. (Т/Р А. Ларина)
Дано уравнение $4sinx-5\sqrt{2sinx}+3=0.$
а) Решите уравнение.
б) Найдите корни этого уравнения, принадлежащие отрезку $[\frac{5\pi}{2};4\pi ]$. Решение
90. (Т/Р А. Ларина)
Дано уравнение $log_2^2(4cos^2x)-8log_2(2cosx)+3=0.$
а) Решите уравнение.
б) Найдите корни этого уравнения, принадлежащие отрезку $[-\frac{7\pi}{2};-2\pi ]$. Решение
91. (Т/Р А. Ларина)
Дано уравнение $sinx=cos(\frac{\pi}{3}-x).$
а) Решите уравнение.
б) Найдите корни этого уравнения, принадлежащие отрезку $[4\pi;\frac{16\pi}{3}]$. Решение
92. (Т/Р А. Ларина)
Дано уравнение $(1-cos2x)sin2x=\sqrt3 sin^2x.$
а) Решите уравнение.
б) Найдите корни этого уравнения, принадлежащие отрезку $[-\pi;\frac{\pi}{3}]$.
Решение
93. (Т/Р А. Ларина)
Дано уравнение $(2sin^2x-3sinx+1)\sqrt{tgx}=0.$
а) Решите уравнение.
б) Найдите корни этого уравнения, принадлежащие отрезку $[2\pi;\frac{7\pi}{2}]$. Решение
94. (Т/Р А. Ларина)
Дано уравнение $\frac{1+2sin^2x-\sqrt3sin2x}{2sinx-1}=0.$
а) Решите уравнение.
б) Найдите корни этого уравнения, принадлежащие отрезку $[\pi;\frac{5\pi}{2}]$. Решение
95. (Т/Р А. Ларина)
Дано уравнение $(\sqrt{4-\sqrt{15}})^{1+2sinx}+(\sqrt{4+\sqrt{15}})^{1+2sinx}=8.$
а) Решите уравнение.
б) Найдите корни этого уравнения, принадлежащие отрезку $[\frac{9\pi}{2};6\pi]$. Решение
96. (Т/Р А. Ларина)
Дано уравнение $log_2sinx\cdot log_{sinx}cos^2x=-1.$
а) Решите уравнение.
б) Найдите корни этого уравнения, принадлежащие отрезку $[4\pi; \frac{11\pi}{2}]$. Решение
97. (Т/Р А. Ларина)
Дано уравнение $8^x+3=3\cdot 4^x+2^x.$
а) Решите уравнение.
б) Найдите корни этого уравнения, принадлежащие отрезку $[-\frac{1}{2};\frac{3}{2}]$.
Решение
98. (Т/Р А. Ларина)
Дано уравнение $cos(x+\frac{\pi}{3})+sin(x+\frac{\pi}{6})-cos2x=1.$
а) Решите уравнение.
б) Найдите корни этого уравнения, принадлежащие отрезку $[-\frac{3\pi}{2};\frac{\pi}{2}]$. Решение
99. (Т/Р А. Ларина)
Дано уравнение $4(sin4x-sin2x)=sinx(4cos^23x+3).$
а) Решите уравнение.
б) Найдите корни этого уравнения, принадлежащие отрезку $[0;\frac{3\pi}{2}]$. Решение
100. (Т/Р 283 А. Ларина)
a) Решите уравнение $\frac{3^{cos^2x}+3^{sin^2x}-4}{sinx+1}=0;$
б) Укажите корни этого уравнения, принадлежащие отрезку $[\frac{11\pi}{2};7\pi].$ Решение