Квадратичная функция

2013-07-05

Функция вида y=ax^2+bx+c , где a\neq 0 называется квадратичной функцией

График квадратичной функции – парабола

Рассмотрим случаи:

I СЛУЧАЙ, КЛАССИЧЕСКАЯ ПАРАБОЛА 

y=x^2, то есть a=1, b=0, c=0

Для построения заполняем таблицу, подставляя значения x в формулу:

Отмечаем  точки (0;0); (1;1); (-1;1) и т.д. на координатной плоскости (чем с меньшим шагом мы берем значения х ( в данном случае шаг 1 ), и чем больше берем значений х, тем плавнее будет кривая), получаем параболу:

Нетрудно заметить, что если мы возьмем случай a=-1, b=0, c=0, то есть y=-x^2, то мы получим параболу, симметричную y=x^2 относительно оси (ох). Убедиться  в этом несложно, заполнив аналогичную таблицу:

II СЛУЧАЙ,  «a» ОТЛИЧНО ОТ ЕДИНИЦЫ

Что же будет, если мы будем брать a=2, a=-3, a=0.5? Как изменится поведение параболы? При |a|>1 парабола  y=ax^2 изменит форму, она “похудеет” по сравнению с параболой y=x^2 (не верите – заполните соответствующую таблицу – и убедитесь сами):

На первой картинке (см. выше) хорошо видно, что точки из таблицы для параболы y=x^2 (1;1), (-1;1) трансформировались в точки (1;4), (1;-4), то есть при тех же значениях x  ордината  y  каждой точки умножилась на 4.  Это произойдет со всеми ключевыми точками исходной  таблицы. Аналогично рассуждаем в случаях картинок 2 и 3.

А при |a|<1 парабола y=ax^2  «станет шире»  параболы y=x^2:

Давайте подытожим:

1) Знак коэффициента a отвечает за направление ветвей. При a > 0  ветви направлены вверх, при a < 0 — вниз. 

2) Абсолютная величина коэффициента (модуля) a отвечает за “расширение”, “сжатие” параболы. Чем больше  |a|, тем у’же парабола, чем меньше |a|, тем шире парабола.

III СЛУЧАЙ, ПОЯВЛЯЕТСЯ  «С»

 Теперь давайте введем в игру c (то есть рассматриваем случай, когда c\neq 0), будем рассматривать параболы вида y=ax^2+c. Нетрудно догадаться (вы всегда можете обратиться к таблице), что будет происходить смещение параболы y=ax^2 вдоль оси (oy) вверх или вниз в зависимости от знака c:

IV СЛУЧАЙ, ПОЯВЛЯЕТСЯ «b»

Когда же парабола “оторвется” от оси (oy) и будет, наконец, “гулять” по всей координатной плоскости? Когда b перестанет быть равным 0.

Здесь для построения параболы y=ax^2+bx+c нам понадобится формула для вычисления вершины: x_o=\frac{-b}{2a},   y_o=y(x_o).

Так вот в этой точке (как в точке (0;0) новой системы координат) мы будем строить параболу y=ax^2, что уже нам по силам. Если  имеем дело со случаем a=1, то от вершины откладываем один единичный отрезок вправо, один вверх, – полученная точка – наша (аналогично шаг влево, шаг вверх – наша точка); если имеем дело с a=2, например, то от вершины откладываем один единичный отрезок вправо, два – вверх и т.д.

Например, вершина параболы y=x^2-4x-2:

x_o=\frac{4}{2}=2,  y_o=(2)^2-4\cdot 2 -2=-6. Теперь главное уяснить, что в этой вершине мы будем строить параболу по шаблону параболы y=x^2,  ведь a=1 в нашем случае.

При построении параболы после нахождения координат вершины очень удобно учитывать следующие моменты:

1) парабола обязательно пройдет через точку (0;c).  Действительно, подставив в формулу y=ax^2+bx+c x=0, получим, что y=c. То есть ордината точки пересечения параболы  с осью (оу), это c.   В нашем примере (выше), парабола пересекает ось ординат в точке -2, так как c=-2.

2) осью симметрии параболы является прямая x=\frac{-b}{2a}, поэтому все точки параболы будут симметричны относительно нее. В нашем примере, мы сразу берем точку (0; -2) и строим ей симметричную относительно оси симметрии параболы, получим точку (4; -2), через которую будет проходить парабола.

3) Приравнивая y к 0, мы узнаем точки пересечения параболы с осью (ох). Для этого решаем уравнение ax^2+bx+c=0. В зависимости от дискриминанта, будем получать одну (D=0,  x=-\frac{b}{2a}), две (D>0, x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}) или нИсколько (D<0) точек пересечения с осью (ох). В предыдущем примере у нас  корень из дискриминанта – не целое число, при построении нам особо нет смысла находить корни, но мы видим четко, что две точки пересечения  с осью (ох) у нас будут (так как D>0), хотя, в общем, это видно и без дискриминанта.

Итак, давайте выработаем

Алгоритм для построения параболы, если она задана  в виде y=ax^2+bx+c

1) определяем направление ветвей ( а>0 – вверх, a<0 – вниз)

2) находим координаты вершины (x_o;y_o) параболы по формуле x_o=\frac{-b}{2a},   y_o=y(x_o).

3) находим точку пересечения параболы с осью (оу) по свободному члену c, строим точку, симметричную данной относительно оси симметрии параболы (надо заметить, бывает, что эту точку невыгодно отмечать, например, потому, что значение c велико… пропускаем этот пункт…)

4) В найденной точке – вершине параболы (как в точке (0;0) новой системы координат) строим параболу y=ax^2. Если |a|>1, то парабола y=ax^2 становится у’же по сравнению с y=x^2, если |a|<1, то парабола расширяется по сравнению с y=x^2

5) Находим точки пересечения параболы с осью (оу) (если они еще сами “не всплыли”), решая уравнение ax^2+bx+c=0

Пример 1

Пример  2

Замечание 1. Если же парабола изначально нам задана в виде y=a(x-m)^2+n, где m, n – некоторые числа (например, y=(x-5)^2-1), то построить ее будет еще легче, потому что нам уже заданы координаты вершины (m, n). Почему?

Возьмем квадратный трехчлен ax^2+bx+c и выделим в нем полный квадрат: ax^2+bx+c=a(x^2+\frac{b}{a}x+\frac{c}{a})=a((x^2+2\frac{b}{2a}x+\frac{b^2}{4a^2})-\frac{b^2}{4a^2}+\frac{c}{a})=a(x+\frac{b}{2a})^2+\frac{b^2}{4a}+c. Посмотрите, вот мы и получили, что m=\frac{-b}{2a}, n=\frac{b^2}{4a}+c=y(\frac{-b}{2a}). Мы с вами ранее называли   вершину параболы (x_o; y_o), то есть теперь x_o=m, y_o=n.

Например,  y=-\frac{1}{3}{(x+2)}^2+6. Отмечаем на плоскости вершину параболы (-2; 6), понимаем, что ветви направлены вниз, парабола расширена (относительно y=x^2). То есть выполняем пункты 1; 3; 4; 5 из алгоритма построения параболы (см. выше).

Замечание 2. Если парабола задана в виде, подобном этому y=x(x-4) (то есть y представлен в виде произведения двух линейных множителей), то нам сразу видны точки пересечения параболы с осью (ох). В данном случае  – (0;0) и (4;0). В остальном же действуем согласно алгоритму, раскрыв скобки.

Печать страницы
Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_bye.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_good.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_negative.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_scratch.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_wacko.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_yahoo.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_cool.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_heart.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_rose.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_smile.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_whistle3.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_yes.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_cry.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_mail.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_sad.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_unsure.gif 
https://egemaximum.ru/wp-content/plugins/wp-monalisa/icons/wpml_wink.gif