Площадь ортогональной проекции многоугольника на плоскость равна площади проектируемого многоугольника, умноженной на косинус угла между плоскостью многоугольника и плоскостью проекций.
Докажем теорему для треугольника. Поскольку многоугольник разбивается на треугольники, сумма площадей которых есть площадь многоугольника, то и для многоугольника теорема будет верна.
Доказательство:
Пусть треугольник – проекция треугольника
на проецируемую плоскость.
Докажем, что
,
где – угол между плоскостями
Для этого разобьем треугольник на два треугольника c общей стороной
, параллельной прямой
пересечения плоскостей
. (Частный случай, когда одна из сторон треугольника
параллельна линии пересечения плоскостей
, можно рассмотреть отдельно (самостоятельно)).
Проекция треугольника – треугольник
. Причем
.
Пусть – перпендикуляр к
. Тогда по т. о трех перпендикулярах и
– перпендикуляр к
. Стало быть,
– угол между плоскостями треугольников (проецируемого и проекции).
Пусть – точка пересечения
и
,
– проекция т.
на плоскость
. Очевидно,
– высота треугольника
(
– высота треугольника
).
Из треугольника
Но и
Тогда
Имеем:
Аналогичные рассуждения – для пары треугольников и
:
(где – высота треугольника
,
– ее проекция)
Итак, суммируя площади треугольников и
соответственно, получаем
или
Что и требовалось доказать.
Пример.
Ребро куба равно 2 см. Через диагональ основания под углом к плоскости основания проведена плоскость, пересекающая боковое ребро. Найти площадь сечения.
Решение:
Пусть плоскость сечения проведена через диагональ и пересекает боковое ребро (
) в точке
.
По вышеуказанной теореме
где треугольник – проекция треугольника
на плоскость основания,
– угол между плоскостями
Ответ:
Применение теоремы можно также посмотреть, например, в этой задаче.
Добавить комментарий