Продолжение (начало здесь)
Перевод радиан в градусы и градусы в радианы
На тригонометрическом круге помимо углов в градусах мы наблюдаем радианы.
Подробнее про радианы:+ показать
радиан – это
Так вот, например,
,
а
.
Так, мы научились переводить радианы в углы.
Теперь наоборот, давайте переводить градусы в радианы.
Допустим, нам надо перевести в радианы. Нам поможет пропорция. Поступаем следующим образом:
Так как, радиан, то заполним таблицу:
Откуда
Итак,
Тренируемся находить значения синуса и косинуса по кругу
Давайте еще уточним следующее.
Ну хорошо, если нас просят вычислить, скажем, , – здесь обычно путаницы не возникает – все начинают первым делом искать
на круге.
А если просят вычислить, например, … Многие, вдруг, начинают не понимают где искать этот ноль… Частенько ищут его в начале координат. Почему?
1) Давайте договоримся раз и навсегда! То, что стоит после или
– это аргумент=угол, а углы у нас располагаются на окружности, не ищите их на осяx! (Просто отдельные точки попадают и на окружность, и на ось…) А сами значения синусов и косинусов – ищем на осях!
2) И еще! Если мы от точки «старт» отправляемся против часовой стрелки (основное направление обхода тригонометрического круга), то мы откладываем положительные значения углов, значения углов растут при движении в этом направлении.
Если же мы от точки «старт» отправляемся по часовой стрелке, то мы откладываем отрицательные значения углов.
Пример 1. Найти значение .
Решение: + показать
Пример 2. Найти значение .
Решение: + показать
Заметим, + показать
Пример 3. Найти значение .
Решение: + показать
Пример 4. Найти значение .
Решение: + показать
Пример 5. Найти значение .
Решение: + показать
Пример 6. Найти значение .
Решение: + показать
Тригонометрический круг – у вас в руках
Вы же уже поняли, что главное – запомнить значения тригонометрических функций первой четверти. В остальных четвертях все аналогично, нужно лишь следить за знаками. А «цепочку-лесенку» значений тригонометрических функций, вы, надеюсь уже не забудете.
Как находить значения тангенса и котангенса основных углов смотрите здесь
После чего, познакомившись с основными значениями тангенса и котангенса, вы можете пройти тест по теме «Нахождение значений косинусов, синусов, тангенсов и котангенсов различных углов»
Ссылочка на пустой шаблон круга. Тренируйтесь!
Здравствуйте, могли бы вы подсказать, что значит свойство sin (t+pi/2)=cos t и cos(t+pi/2)=-sin t ? А как это возможно, если мы на 90 градусов уйдем влево-вправо, поменяется четверть круга, и знак, соответственно, почему же у косинуса будет тот же знак, что и у синуса t+пи/2 ?
Сергей, вам сюда.