Т/Р №221 А. Ларина (часть С)

2018-01-25

Разбор заданий части С

Задание №19 Т/Р №220 А. Ларина

2018-01-24

Смотрите также №13; №14; №15№16; №17№18 Тренировочной работы №220 А. Ларина.

19. а) Могут ли выполняться равенства a_1+a_2+a_3+a_4=a_1\cdot a_2\cdot a_3\cdot a_4=30, где a_1,a_2,a_3,a_4 – целые числа?

б) Могут ли выполняться равенства a_1+a_2+a_3+a_4+a_5+a_6+a_7=a_1\cdot a_2\cdot a_3\cdot a_4\cdot a_5\cdot a_6\cdot a_7=60, где a_1,a_2,a_3,a_4,a_5,a_6,a_7 – целые числа?
в) При каком наименьшем номере  n\geq 2 могут выполняться равенства

a_1+a_2+...+a_n=a_1\cdot a_2\cdot ...\cdot a_n=2018, где a_1,a_2,...,a_n – целые числа?

Читать далее

Задание №15 Т/Р №220 А. Ларина

2018-01-17

Смотрите также №13; №14№16; №17№18; №19 Тренировочной работы №220 А. Ларина.

15. Решите неравенство

2\sqrt{sin^2x-sinx-1}\geq cos^2x+sinx+3. Читать далее

Задание №13 Т/Р №220 А. Ларина

2018-01-17

Смотрите также №14; №15№16; №17№18; №19 Тренировочной работы №220 А. Ларина.

13. Дано уравнение 8^x+3=3\cdot 4^x+2^x.

а) Решите уравнение.

б) Найдите корни этого уравнения, принадлежащие отрезку [-\frac{1}{2};\frac{3}{2}].

Читать далее

Задание №17 Т/Р №220 А. Ларина

2018-01-17

Смотрите также №13; №14; №15№16№18; №19 Тренировочной работы №220 А. Ларина

17. 1 июля планируется взять кредит в банке на сумму 300 тыс. рублей на некоторый срок (целое число месяцев). Условия его возврата таковы:

‐ 15 числа каждого месяца долг возрастает на 10% по сравнению с началом текущего месяца;

‐ с 16 по 28 число каждого месяца необходимо выплачивать часть долга.

‐ 1 числа каждого месяца долг должен быть на одну и ту же сумму меньше, чем долг на 1 число предыдущего месяца.
На сколько месяцев был взят кредит, если известно, что сумма выплат за первый год оказалась на 144 тыс. рублей больше, чем сумма выплат за второй год? Найдите общую сумму выплат после полного погашения кредита.

Читать далее

Задание №18 Т/Р №220 А. Ларина

2018-01-17

Смотрите также №13; №14; №15№16; №17№19 Тренировочной работы №220 А. Ларина.

18. Найдите все значения параметра a, при каждом  из которых уравнение

lg(1-x)+lg(a^2-x^2)=lg(x-a)^2

имеет ровно одно решение.

Читать далее

Задание №16 Т/Р №220 А. Ларина

2018-01-17

Смотрите также №13; №14; №15№17№18; №19 Тренировочной работы №220 А. Ларина.

16. Две окружности касаются друг друга внешним образом в точке K. Прямая p

касается первой окружности в точке M, а второй – в точке N.
а) Докажите что расстояние от точки K до прямой p равно \frac{MK\cdot KN}{MN}.

б) Найдите площадь треугольника MNK, если известно, что радиусы окружностей равны соответственно 12 и 3.

Читать далее

Задание №14 Т/Р №220 А. Ларина

2018-01-17

Смотрите также №13№15№16; №17№18; №19 Тренировочной работы №220 А. Ларина.

14. В кубе ABCDA_1B_1C_1D_1 точка O_1 – центр квадрата ABCD, точка O_2 – центр квадрата CC_1D_1D.
а) Докажите, что прямые A_1O_1 и B_1O_2 – скрещивающиеся.
б) Найдите расстояние между прямыми A_1O_1 и B_1O_2, если ребро куба равно 2.

Читать далее

Задание №18 Т/Р №215 А. Ларина

2018-01-15

Смотрите также №13; №14; №15№16; №17№19 Тренировочной работы №215 А. Ларина.

18. Найдите все значения параметра a, при каждом  из которых уравнение

\begin{cases} x^2+y^2-2|x-y|=2,& &x^2+y^2-2a(x+y)+2a^2=2;& \end{cases}

имеет ровно два решения.

Читать далее

Задание №13 Т/Р №215 А. Ларина

2017-12-13

Смотрите также №14; №15№16; №17№18; №19 Тренировочной работы №215 А. Ларина.

13. Дано уравнение log_2sinx\cdot log_{sinx}cos^2x=-1.

а) Решите уравнение.

б) Найдите корни этого уравнения, принадлежащие отрезку [4\pi; \frac{11\pi}{2}].

Читать далее

Задание №14 Т/Р №215 А. Ларина

2017-12-14

Смотрите также №13№15№16; №17№18; №19 Тренировочной работы №215 А. Ларина.

14. В параллелепипеде ABCDA_1B_1C_1D_1 точка K – середина ребра AB.

а) Докажите, что плоскость CKD_1 делит объем параллелепипеда в отношении 7:17.
б) Найдите расстояние от точки D до плоскости CKD_1, если известно, что ребра AB,AD,AA_1 попарно перпендикулярны и равны соответственно 6, 4 и 6.

Читать далее

Задание №16 Т/Р №215 А. Ларина

2017-12-14

Смотрите также №13; №14; №15№17№18; №19 Тренировочной работы №215 А. Ларина.

16. Две окружности касаются внутренним образом в точке K. Пусть AB – хорда большей окружности, касающаяся меньшей окружности в точке L.

а) Докажите, что KL – биссектриса угла AKB.
б) Найдите длину отрезка KL, если известно, что радиусы большей и меньшей окружностей равны соответственно 6 и 2, а угол AKB равен 90^{\circ}.

Читать далее

Задание №15 Т/Р №215 А. Ларина

2017-12-13

Смотрите также №13; №14№16; №17№18; №19 Тренировочной работы №215 А. Ларина.

15. Решите неравенство

(3^x-2^x)(6^{x+1}+1)+6^x\geq 3^{2x+1}-2^{2x+1}. Читать далее

Задание №19 Т/Р №215 А. Ларина

2018-01-15

Смотрите также №13; №14; №15№16; №17№18 Тренировочной работы №215 А. Ларина.

19. Подковывая лошадь, кузнец тратит на одну подкову 5 минут.

а) Смогут ли два кузнеца за полчаса подковать трёх лошадей?

б) Смогут ли четыре кузнеца за 15 минут подковать трёх лошадей?
в) За какое наименьшее время 48 кузнецов смогут подковать 60 лошадей?
(Известно, что лошадь не может стоять на двух ногах, поэтому два кузнеца не могут одновременно работать с одной лошадью).

Читать далее

Задание №17 Т/Р №215 А. Ларина

2017-12-14

Смотрите также №13; №14; №15№16№18; №19 Тренировочной работы №215 А. Ларина.

17. Спонсор выделил школе 50 тысяч рублей на покупку мячей. Известно, что футбольный мяч стоит 700 рублей, баскетбольный – 600 рублей, волейбольный – 500 рублей. Необходимо приобрести мячи всех трёх видов, причём их количества не должны отличаться более, чем на 10 штук. Какое наибольшее количество мячей сможет приобрести школа, не привысив на их покупку выделенной суммы?

Читать далее